Minimal polynomials of elements of order p in p-modular projective representations of alternating groups
نویسنده
چکیده
Let F be an algebraically closed field of characteristic p > 0 and G be a quasi-simple group with G/Z(G) ∼= An. We describe the minimal polynomials of elements of order p in irreducible representations of G over F . If p = 2 we determine the minimal polynomials of elements of order 4 in 2modular irreducible representations of An, Sn, 3 ·A6, 3 ·S6, 3 ·A7, and 3 ·S7.
منابع مشابه
Groups with Two Extreme Character Degrees and their Minimal Faithful Representations
for a finite group G, we denote by p(G) the minimal degree of faithful permutation representations of G, and denote by c(G), the minimal degree of faithful representation of G by quasi-permutation matrices over the complex field C. In this paper we will assume that, G is a p-group of exponent p and class 2, where p is prime and cd(G) = {1, |G : Z(G)|^1/2}. Then we will s...
متن کاملSome bounds on unitary duals of classical groups - non-archimeden case
We first give bounds for domains where the unitarizabile subquotients can show up in the parabolically induced representations of classical $p$-adic groups. Roughly, they can show up only if the central character of the inducing irreducible cuspidal representation is dominated by the square root of the modular character of the minimal parabolic subgroup. For unitarizable subquotients...
متن کاملPositive Cone in $p$-Operator Projective Tensor Product of Fig`a-Talamanca-Herz Algebras
In this paper we define an order structure on the $p$-operator projective tensor product of Herz algebras and we show that the canonical isometric isomorphism between $A_p(Gtimes H)$ and $A_p(G)widehat{otimes}^p A_p(H)$ is an order isomorphism for amenable groups $G$ and $H$.
متن کاملQUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...
متن کاملDECOMPOSING SYMMETRIC POWERS OF MODULAR REPRESENTATIONS OF ELEMENTARY ABELIAN p-GROUPS
Let G be a elementary abelian p-group of order q = p. Let V be a faithful indecomposable modular representation of G with dimension 2. We consider representations of the form S(S(V )). In particular we prove that S(S(V )) is projective whenever d+m ≥ q, and either d < p and m < q or m < p and d < q. More generally we show that if d+m ≥ q and d < q, m < q, then each summand of S(S(V )) is induce...
متن کامل